
Answers to the Exam of Symmetry in Physics of April 2, 2013

Exercise 1

(a) Prove that the inverses of elements of a conjugacy class of a group G also
form a conjugacy class of G.

Define K ′ = {g−1|g ∈ K}, where K is a conjugacy class of G. If K ′

is a class of G, then (1) all elements in K ′ are conjugated to each
other and (2) no elements outside K ′ are conjugated to elements in
K ′. (1) follows from: ∀h1, h2 ∈ K ′ : ∃h ∈ G : h−11 = hh−12 h−1, since
h−11 , h−12 ∈ K. Therefore, ∀h1, h2 ∈ K ′ : ∃h ∈ G : h1 = hh2h

−1. (2)
follows from assuming h1 ∈ K ′, h2 6∈ K ′, but ∃h ∈ G : h1 = hh2h

−1,
and deriving a contradiction: it implies h−11 = hh−12 h−1, hence
h−11 ∈ K is conjugated to h−12 which must also be in K therefore,
and hence h2 ∈ K ′, contrary to the assumption.

(b) Show that the mapping φ : G → G, g 7→ g−1 is a 1-1 mapping that in
general does not provide an isomorphism. Show for which type of groups it
does provide an isomorphism.

φ is a 1-1 mapping when ∀g, h ∈ G : φ(g) = φ(h)⇒ g = h, which is
the case since g−1 = h−1 ⇒ g = h. It is not an isomorphism, since
it is not a homomorphism: φ(gh) = (gh)−1 = h−1g−1 6= g−1h−1 =
φ(g)φ(h). Only for an Abelian group it provides an isomorphism.

(c) Consider a conjugacy class K. Show by using Schur’s lemma that O =∑
g∈K D(g) is proportional to the identity element, if D is an irrep.

∀h ∈ G : D(h)O =
∑

g∈K D(hgh−1)D(h) = OD(h). The first
step uses that D is a representation. The last step follows from
the fact that hgh−1 ∈ K, hence K ′ ≡ hKh−1 ⊂ K, and since
gi 6= gj ⇒ hgih

−1 6= hgjh
−1 implies that K ′ has the same number

of elements as K, one must have that K ′ = K. Therefore, the sum
over all g ∈ K can be replaced by a sum over hgh−1 which is again
a sum over all elements of K.

(d) Consider a regular n-sided polygon. Show that any rotation of the poly-
gon is conjugated to its inverse rotation. Show this by using the defining
relations of the group Dn and by geometrical arguments.



The symmetry group of a regular n-sided polygon isDn. Its defining
relation (bc)2 = e implies: bcb = c−1, which together with b2 = e
implies: bcb−1 = c−1, which proves that c ∼ c−1. Similarly, bcmb =
(bcb)m = c−m. The geometrical argument uses the action of the
symmetry group of the polygon embedded in R3 on vectors in R3.
The rotation over an angle 2πm/n, for any m ∈ {0, 1, . . . , n − 1},
is conjugated to the rotation over an angle −2πm/n, because the
action on any 3-vector of both rotations can be related to each
other by a rotation b over 180◦ (or in two dimensions a reflection
in a line), which is also an element of the group.

(e) Consider R ∈ O(3). Compute the determinant of the inverse of R.

detRRT = 1 ⇒ (detR)2 = 1 and detRR−1 = 1 ⇒ detR−1 =
1/ detR. Therefore, if detR = 1, then detR−1 = 1, and if detR =
−1, then detR−1 = −1.

Exercise 2
Consider the water molecule H2O:

104.5◦

H H

O

(a) Determine the group GW of all symmetry transformations that leave the
water molecule invariant. (Hint: consider rotations and reflections in three
dimensions.)



Consider the centers of the atoms to be in the x-y plane, with the
x direction parallel to the H centers and the y axis orthogonal to
it, running through the O center. Apart from the trivial operation
e, the molecule is invariant under a rotation c around the y axis
over 180◦, a reflection b in the x-y plane, and a reflection (which is
equal to bc) in the y-z plane. These operations form a group called
C2v
∼= D2: gp{b, c} with c2 = b2 = (bc)2 = e. The operations are

clearly not conjugated to each other. They form an Abelian group.

(b) Construct the character table of this group GW .

(e) (c) (b) (bc)

D(1) 1 1 1 1
D(2) 1 1 −1 −1
D(3) 1 −1 1 −1
D(4) 1 −1 −1 1

(c) Construct the three-dimensional vector representation DV of GW .

DV (c) =

 −1 0 0
0 1 0
0 0 −1

 , DV (b) =

 1 0 0
0 1 0
0 0 −1

 , DV (bc) =

 −1 0 0
0 1 0
0 0 1

 .

Note that the determinants correctly correspond to rotations and
reflections.

(d) Decompose DV into irreps of GW and use this to conclude whether the
water molecule allows for an electric dipole moment or not.

χV = (3,−1, 1, 1), hence DV ∼ D(1) ⊕ D(3) ⊕ D(4), which follows
either by direct inspection or by calculation of 〈χ(i), χV 〉. The de-
composition includes the trivial rep, which shows that there is an
invariant vector/direction. The water molecule allows (and as you
may recall from your chemistry class, it actually has) an electric
dipole moment.

(e) Determine the Clebsch-Gordan series of the direct product representation
DV ⊗DV of GW .

χV⊗V = (9, 1, 1, 1), hence DV⊗V ∼ 3D(1) ⊕ 2D(2) ⊕ 2D(3) ⊕ 2D(4),
which follows either by direct inspection or by calculation of
〈χ(i), χV⊗V 〉.



(f) Explicitly determine the tensors T ij (i, j = 1, 2, 3) that are invariant under
the transformations ofGW and check whether the answer is in agreement with
the result obtained in part (e) of this exercise.

Find the 3 × 3 matrices T that commute with all DV (g) matrices
by explicit computation:  a 0 0

0 b 0
0 0 c

 ,

for any three independent numbers a, b, c. This means there are
3 independent invariant tensors, which correspond to the 3 triv-
ial irreps present in the Clebsch-Gordan decomposition of DV⊗V

obtained in part (e).

Exercise 3
Consider the group of rotations in two dimensions SO(2) and the unitary
group U(1).

(a) Write down the elements of SO(2) in its defining representation.

R(φ) =

(
cosφ − sinφ
sinφ cosφ

)
These are all orthogonal 2× 2 matrices with determinant 1.

(b) Write down the elements of U(1) in its defining representation.

U(φ) = (eiφ)

These are all unitary 1× 1 “matrices”.

(c) Show that SO(2) ∼= U(1).

R(φ) 7→ U(φ) is a 1-1 mapping (recall that eiφ = cosφ + i sinφ)
that is onto. Clearly they follow the same group multiplication:
R(α)R(β) = R(α + β), U(α)U(β) = U(α + β).

(d) Write down all (complex) irreducible representations of SO(2).

D(m)(φ) = eimφ, for all m ∈ Z.



(e) Give an example of a physical system with an SO(2) or U(1) symmetry.

E.g. the rotation symmetry of a cylinder or the gauge symmetry of
electromagnetic fields.

Next consider the extension of SO(2) to include reflections: the group O(2)
of orthogonal 2× 2 matrices.

(f) Write down the two-dimensional representation of O(2) obtained by its
action on the vector (

x+ iy
x− iy

)
On this basis the elements of SO(2) are:

R(φ) =

(
eiφ 0
0 e−iφ

)
Any other element of O(2) can be written as PR(φ), for some P
with detP = −1, e.g. a reflection in the x axis, which on this basis
is given by:

P =

(
0 1
1 0

)
(g) Show whether this two-dimensional rep of O(2) is an irrep or not.

One way is to note that the matrices of O(2) cannot simultaneously
be brought to the form: (

a b
0 c

)
.

Another way is to note that PR(φ)P = R(−φ), hence the only
matrix that commutes with all O(2) matrices is R(φ = 0), which is
the identity matrix. This also implies that the 2-D rep is an irrep.


